Skip to main content

Binary Relations

Binary Relations: Denote a relation over a set AA be RR, if the relation is binary relation, then a,bA\forall a,b \in A

  • if aa relates bb under relation RR, denote as aRbaRb
  • else aba\not R b

Some Property of Binary Relations RR over a set AA may have:

  • irreflexive: aA,aa\forall a \in A, a\not R a
  • reflexive: aA,aRa\forall a \in A, aRa
  • asymmetric: a,bA,aRb    ba\forall a,b \in A, aRb\implies b\not R a
  • symmetric: a,bA,aRb    bRa\forall a,b \in A, aRb\implies bRa
  • antisymmetric: a,bA(aRbbRa    a=b)\forall a,b\in A (aRb\land bRa \implies a=b)
  • transitive: a,b,cA,aRbbRc    aRc\forall a,b,c \in A, aRb \land bRc \implies aRc
  • connected: a,bA,ab    aRbbRa\forall a,b \in A, a\ne b \implies aRb \lor bRa
  • cyclic: a,b,cA,aRbbRc    cRa\forall a,b,c\in A, aRb\land bRc \implies cRa
  • irreflexive \land transitive     \implies asymmetric

Strict (partial) Order: a binary relation RR over a set AA is irreflexive, asymmetric(not necessary) and transitive

  • e.g.: Dependencies, Little-o, \sub, etc.

Strict Total Order: a binary relation RR over a set AA is strict order and connected

  • e.g.: Dictionary Order, etc.

Hasse Diagram: R,R\forall R, R is strict order over a set AA, a,bA\forall a,b \in A, Hasse diagram has a edge ab    aRbc,aRccRba\to b \iff a Rb \land \nexists c, aRc \land cRb

Notice: it (binary relation) is very different with the binary operation of group theory.

Partial Order: a binary relation RR over a set AA is reflexive, antisymmetric and transitive

Total Order: a binary relation RR over a set AA is partial order and connected.

Equivalence Relation: a binary relation RR over a set AA is reflexive, symmetric and transitive

  • e.g. ==, modular (n):a=b(mod n),a,b,nN(\equiv_n): a =b(mod \ n), a,b,n\in \N
  • cyclic and reflexive R    R \implies RR is equivalence relation

Equivalence Class: Let RR be Equivalence Relation on a set AA, aA\forall a\in A, the Equivalence Class of aa respect to RR, denoted [a]R[a]_R has property [a]R={bA:aRb}[a]_R = \{b\in A: aRb\}

  • a,bA,[a]R=[b]R    aRb\forall a,b \in A, [a]_R= [b]_R \iff aRb (lemma)

Partition: let AA be any set, and XX be a collection of subsets of AA. aA,SX,aS    X\forall a\in A, \exists S\in X, a\in S \implies X is a partition of AA

  • Let RR be an equivalence relation on a set AA. The set of Equivalence Classes is a partition of AA.
  • Or we can say aA,[a]R,a[a]R,[a]R\forall a \in A, \exists [a]_R, a\in[a]_R, [a]_R is unique